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ABSTRACT

Conventional approaches to image registration consist of
time consuming iterative methods. Most current deep learn-
ing (DL) based registration methods extract deep features to
use in an iterative setting. We propose an end-to-end DL
method for registering multimodal images. Our approach
uses generative adversarial networks (GANs) that eliminates
the need for time consuming iterative methods, and directly
generates the registered image with the deformation field.
Appropriate constraints in the GAN cost function produce
accurately registered images in less than a second. Experi-
ments demonstrate their accuracy for multimodal retinal and
cardiac MR image registration.

Index Terms— GANs, deformable registration, displace-
ment field

1. INTRODUCTION

Image registration is a fundamental step in most medical im-
age analysis problems, and a comprehensive review of algo-
rithms can be found in [1, 2, 3, 4, 5]. Conventional registra-
tion methods use iterative gradient descent based optimiza-
tion using cost functions such as mean square error (MSE),
normalized mutual information, etc. Such methods tend to be
time consuming, especially for volumetric images. We pro-
pose a fully end-to-end deep learning (DL) approach that does
not employ iterative methods, but uses generative adversarial
networks (GANs) for obtaining registered images and the cor-
responding deformation field.

Thw works in [6, 7, 8, 9, 10] use convolutional stacked au-
toencoders (CAE) to extract features from fixed and moving
images, and use it in a conventional iterative deformable reg-
istration framework. The works of [11, 12, 13, 14, 15, 16] use
convolutional neural network (CNN) regressors in rigid reg-
istration of synthetic images. In [17, 18, 19, 20, 21] employ
CNNs and reinforcement learning for iterative registration of
CT to cone-beam CT in cardiac and abdominal images. DL
based regression methods still require conventional methods
to generate the transformed image.

Jaderberg et al. [22] introduced spatial transformer net-
works (STN) to align input images in a larger task-specific
network. STNs, however, need many labeled training ex-
amples and have not been used for medical image analysis.

Sokooti et. al. [23, 24, 25, 26, 27] propose RegNet that
uses CNNs trained on simulated deformations to generate dis-
placement vector fields for a pair of unimodal images. Vos
et. al. [28, 29, 30, 31, 32, 33] propose the deformable im-
age registration network (DIR-Net) which takes pairs of fixed
and moving images as input, and outputs a transformed image
non-iteratively. Training is completely unsupervised and un-
like previous methods it is not trained with known registration
transformations.

While RegNet and DIRNet are among the first methods to
achieve registration in a single pass, they have some limita-
tions such as: 1) using spatially corresponding patches to pre-
dict transformations. Finding corresponding patches is chal-
lenging in low contrast medical images and can adversely af-
fect the registration task; 2) Multimodal registration is chal-
lenging with their approach due to the inherent problems of
finding spatially corresponding patches; 3) DIRNet uses B-
splines for spatial transformations which limits the extent of
recovering a deformation field; 4) Use of intensity based cost
functions limits the benefits that can be derived from a DL
based image registration framework.

To overcome the above limitations we make the follow-
ing contributions: 1) we use GANs for multimodal medical
image registration, which can recover more complex range of
deformations ; 2) novel constraints in the cost function, such
as VGG, SSIM loss and deformation field reversibility, en-
sure that the trained network can easily generate images that
are realistic with a plausible deformation field. We can choose
any image as the reference image and registration is achieved
in a single pass.

2. METHODS

GANs are generative DL models trained to output many im-
age types. Training is performed in an adversarial setting
where a discriminator outputs a probability of the generated
image matching the training data distribution. GANs have
been used in various applications such as image super resolu-
tion [34, 35, 36, 37, 38, 39, 40], image synthesis and image
translation using conditional GANs (cGANs) [41, 42, 43, 44,
45, 46] and cyclic GANs (cycGANs) [47, 48, 49, 50, 51, 52].

In cGANs the output is conditioned on the input image
and a random noise vector, and requires training image pairs.
On the other hand cycGANs do not require training image
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pairs but enforce consistency of deformation field. We lever-
age the advantage of both methods to register multimodal im-
ages. For multimodal registration we use cGANs to ensure
the generated output image (i.e., the transformed floating im-
age) has the same characteristic as the floating image (in terms
of intensity distribution) while being similar to the reference
image (of a different modality) in terms of landmark loca-
tions. This is achieved by incorporating appropriate terms in
the loss function for image generation. Additionally, we en-
force deformation consistency to obtain realistic deformation
fields. This prevents unrealistic registrations and allows any
image to be the reference or floating image. A new test im-
age pair from modalities not part of the training set can be
registered without the need for re-training the network.

2.1. Generating Registered Images

Let us denote the registered (or transformed) image as ITrans,
obtained from the input floating image IFlt, and is to be reg-
istered to the fixed reference image IRef . For training we
have pairs of multimodal images where the corresponding
landmarks are perfectly aligned (e.g., retinal fundus and fluo-
roscein angiography (FA) images). Any one of the modalities
(say fundus) is IRef . IFlt is generated by applying a known
elastic deformation field to the other image modality (in this
case FA). The goal of registration is to obtain ITrans from
IFlt such that ITrans is aligned with IRef . Applying syn-
thetic deformations allows us to: 1) accurately quantify the
registration error in terms of deformation field recovery; and
2) determine the similarity between ITrans and FA images.

The generator network that outputs ITrans from IFlt is a
feed-forward CNN whose parameters θG are,

θ̂ = argmin
θG

1

N

N∑
n=1

lSR
(
GθG(I

Flt), IRef , IFlt
)
, (1)

where the loss function lSR combines content loss (to ensure
that ITrans has desired characteristics) and adversarial loss,
and GθG(I

Flt) = ITrans. The content loss is,

lcontent = NMI(ITrans, IRef ) + SSIM(ITrans, IRef )

+ V GG(ITrans, IRef ).

(2)

ITrans should: 1) have identical intensity distribution
as IFlt and; 2) have similar structural information content
as IRef . NMI(ITrans, IRef ) denotes the normalized mu-
tual information (NMI) between IRef and ITrans. NMI is
a widely used cost function for multimodal deformable reg-
istration [53, 54, 55, 56, 57, 58] since it matches the joint
intensity distribution of two images. SSIM(ITrans, IRef )
denotes the structural similarity index metric (SSIM) [59,
60, 61, 62, 63, 64] and calculates image similarity based on
edge distribution and other landmarks. Since it is not based

(a)

(b)

Fig. 1. (a) Generator Network; (b) Discriminator network.
n64s1 denotes 64 feature maps (n) and stride (s) 1 for each
convolutional layer.

on intensity values it accurately quantifies landmark corre-
spondence between different images. V GG(ITrans, IRef )
is the L2 distance between two images using all 512 feature
maps of Relu 4− 1 layer of a pre-trained V GG− 16 network
[65, 66, 67, 68, 69, 70]. VGG loss improves robustness since
the cost function takes into account multiple feature maps
that capture information at different scales.

The adversarial loss of Eqn. 3 ensures that ITrans has
an identical intensity distribution as IFlt. We could realize
this condition by having an extra NMI(ITrans, IFlt) term
in Eqn. 2. But this does not lead to much improvement in
results.

The generator network G (Figure 1(a)) employs residual
blocks, each block having two convolutional layers with 3×3
filters and 64 feature maps, followed by batch normalization
and ReLU activation. In addition to generating the registered
image G also outputs a deformation field. The discriminator
D (Figure 1 (b)) has eight convolutional layers with the ker-
nels increasing by a factor of 2 from 64 to 512 . Leaky ReLU
is used and strided convolutions reduce the image dimension
when the number of features is doubled. The resulting 512
feature maps are followed by two dense layers and a final sig-
moid activation to obtain a probability map. D evaluates sim-
ilarity of intensity distribution between ITrans and IRef , and
the error between generated and reference deformation fields.

2.2. Deformation Field Consistency

CycGANs learn mapping functions between two domains X
and Y given training samples xNi=1 ∈ X and yMj=1 ∈ Y . It
has two transformations G : X → Y and F : Y → X ,
and two adversarial discriminators DX and DY , where DX

differentiates between images x and registered images F (y)



and DY distinguishes between y and G(x). Here X = IFlt

and Y = IRef . G registers IFlt to IRef while F registers
IRef to IFlt. In addition to the content loss (Eqn 2) we have:
1) an adversarial loss to match ITrans’s distribution to IFlt;
and 2) a cycle consistency loss to ensure transformationsG,F
do not contradict each other.

2.2.1. Adversarial Loss

The adversarial loss function for G is given by:

LcycGAN (G,DY , X, Y ) = Ey∈pdata(y) [logDY (y)] +

Ex∈pdata(x) [log (1−DY (G(x)))] ,
(3)

We retain notations X,Y for conciseness. There also exists
LcycGAN (F,DX , Y,X) the corresponding adversarial loss
for F and DX .

2.2.2. Cycle Consistency Loss

A network may arbitrarily transform the input image to match
the distribution of the target domain. Cycle consistency loss
ensures that for each image x ∈ X the reverse deformation
should bring x back to the original image, i.e. x → G(x) →
F (G(x)) ≈ x. Similar constraints also apply for mapping F
and y. This is achieved using,

Lcyc(G,F ) = Ex ‖F (G(x))− x‖1 + Ey ‖G(F (y))− y‖1 ,
(4)

The full objective function is

L(G,F,DIFlt , DIRef ) = LcycGAN (G,DIRef , IFlt, IRef )

+ LcycGAN (F,DIFlt , IRef , IFlt) + λLcyc(G,F )

(5)

where λ = 10 controls the contribution of the two objectives.
The optimal parameters are given by:

G∗, F ∗ = argmin
F,G

max
D

IFlt ,DIRef

L(G,F,DIFlt , DIRef ) (6)

The above formulation ensures ITrans to be similar to
IFlt and also match IRef . We do not need to explicitly con-
dition ITrans on IRef or IFlt as that is implicit in the cost
function (Eqns 2,3), which allows any pair of multimodal im-
ages to be registered even if the modality was not part of the
training set.

3. EXPERIMENTS AND RESULTS

We demonstrate the effectiveness of our approach on retinal
and cardiac images. Details on dataset and experimental set
up are provided later. Our method was implemented with
Python and TensorFlow (for GANs). For GAN optimization
we use Adam [71, 72, 73, 74, 75, 76] with β1 = 0.93 and
batch normalization. The ResNet was trained with a learning

rate of 0.001 and 105 update iterations. MSE based ResNet
was used to initialize G. The final GAN was trained with 105

update iterations at learning rate 10−3. Training and test was
performed on a NVIDIA Tesla K40 GPU with 12 GB RAM.

3.1. Retinal Image Registration Results

The data consists of retinal colour fundus images and fluo-
rescein angiography (FA) images obtained from 30 normal
subjects. Both images are 576 × 720 pixels and fovea cen-
tred [77]. Registration ground truth was developed using the
Insight Toolkit (ITK). The Frangi vesselness[78, 79, 80, 81,
82, 83, 84] feature was utilised to find the vasculature, and the
maps were aligned using sum of squared differences (SSD).
Three out of 30 images could not be aligned due to poor con-
trast and one FA image was missing, leaving us with a final
set of 26 registered pairs. We use the fundus images as IRef

and generate floating images from the FA images by simulat-
ing different deformations (using SimpleITK) such as rigid,
affine and elastic deformations(maximum displacement of a
pixel was ±10 mm. 1500 sets of deformations were gener-
ated for each image pair giving a total of 39000 image pairs.

Our algorithm’s performance was evaluated using aver-
age registration error (ErrDef ) between the applied defor-
mation field and the recovered deformation field. Before ap-
plying simulated deformation the mean Dice overlap of the
vasculature between the fundus and FA images across all 26
patients is 99.2, which indicates highly accurate alignment.
After simulating deformations the individual Dice overlap re-
duces considerably depending upon the extent of deforma-
tion. The Dice value after successful registration is expected
to be higher than before registration. We also calculate the 95
percentile Hausdorff Distance (HD95) and the mean absolute
surface distance (MAD) before and after registration. We cal-
culate the mean square error (MSE) between the registered
FA image and the original undeformed FA image to quantify
their similarity. The intensity of both images was normalized
to lie in [0, 1]. Higher values of Dice and lower values of other
metrics indicate better registration. The average training time
for the augmented dataset of 39000 images was 14 hours.

Table 1 shows the registration performance for GANReg ,
our proposed method, and compared with the following meth-
ods: DIRNet - the CNN based registration method of [28];
Elastix - an iterative NMI based registration method [85, 86,
87, 88, 89, 90, 91]; and GANRegnCyc

- GANReg without
deformation consistency constraints. GANReg has the best
performance across all metrics. Figure 2 shows registration
results for retinal images. GANReg registers the images clos-
est to the original and is able to recover most deformations
to the blood vessels, followed by DIRNet, GANReg−nCyc,
and Elastix. It is obvious that deformation reversibility con-
straints significantly improve registration performance. Note
that the fundus images are color while the FA images are
grayscale. The reference image is a grayscale version of the



After Registration
Bef. GAN DIRNet Elastix GAN
Reg. Reg [28] [85] RegnCyc

Dice 0.843 0.946 0.911 0.874 0.887
ErrDef 14.3 5.7 7.3 12.1 9.1
HD95 11.4 4.2 5.9 9.7 8.0
MAD 9.1 3.1 5.0 8.7 7.2
MSE 0.84 0.09 0.23 0.54 0.37

Time (s) 0.7 0.9 15.1 0.7

Table 1. Comparative average performance of different meth-
ods before and after retinal image registration. Time denotes
time in seconds taken to register a test image pair.

fundus image.

3.2. Cardiac Image Registration Results

The second dataset is the Sunybrook cardiac dataset [92] with
45 cardiac cine MRI scans acquired on a single MRI-scanner.
They consist of short-axis cardiac image slices each contain-
ing 20 timepoints that encompass the entire cardiac cycle.
Slice thickness and spacing is 8 mm, and slice dimensions
are 256 × 256 with a pixel size of 1.28 × 1.28 mm. The
data is equally divided in 15 training scans (183 slices), 15
validation scans (168 slices), and 15 test scans (176 slices).
An expert annotated the right ventricle (RV) and left ventricle
myocardium at end-diastolic (ED) and end-systolic (ES) time
points. Annotations were made in the test scans and only used
for final quantitative evaluation.

We calculate Dice values before and after registration,
HD95, and MAD. We do not simulate deformations on this
dataset and hence do not calculate ErrDef ,MSE. Being a
public dataset our results can be benchmarked against other
methods. While the retinal dataset demonstrates our method’s
performance for multimodal registration, the cardiac dataset
highlights the performance in registering unimodal dynamic
images. The network trained on retinal images was used for
registering cardiac data without re-training. The first frame
of the sequence was used as the reference image IRef and all
other images were floating images.

Table 2 summarizes the performance of different meth-
ods, and Figure 3 shows superimposed manual contour of the
RV (red) and the deformed contour of the registered image
(green). Better registration is reflected by closer alignment of
the two contours. Once again it is obvious that GANReg has
the best performance amongst all competing methods, and its
advantages over GANReg−nCyc when including deformation
consistency.

4. CONCLUSION

We have proposed a GAN based method for multimodal med-
ical image registration. Our proposed method allows fast and

After Registration
Bef. GAN DIRNet Elastix GAN
Reg. Reg [28] [85] RegnCyc

Dice 0.62 0.85 0.80 0.77 0.79
HD95 7.79 3.9 5.03 5.21 5.12
MAD 2.89 1.3 1.83 2.12 1.98

Time (s) 0.8 0.8 11.1 0.8

Table 2. Comparative average performance of different meth-
ods before and after cardiac image registration. Time denotes
time in seconds taken to register a test image pair..

accurate registration and is independent of the choice of ref-
erence or floating image. Our primary contribution is in using
GAN for medical image registration, and combining condi-
tional and cyclic constraints to obtain realistic and smooth
registration. Experimental results demonstrate that we per-
form better than traditional iterative registration methods and
other DL based methods that use conventional transformation
approaches such as B-splines.
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